INSTRUCTIONS

TurboFectTM Transfection Reagent

R0532 R0533 R0534

2444.0

Number	Description
R0533	TurboFect Transfection Reagent, 200µL, for 60-100 in vitro transfections
R0534	TurboFect Transfection Reagent, $5 \times 200 \mu L$, for 300-500 <i>in vitro</i> transfections
R0532	TurboFect Transfection Reagent, 5×1 mL, for 1500-2500 <i>in vitro</i> transfections

Storage: Upon receipt store at 4°C. Product shipped at ambient temperature.

Introduction

The Thermo Scientific TurboFect Transfection Reagent is a sterile solution of cationic polymers in water. The polymers and deoxyribonucleic acid (DNA) form compact, stable, positively charged complexes, which protect DNA from degradation and facilitate gene delivery into eukaryotic cells. The transfection reagent is ideal for transfection of primary cells, difficult-to-transfect cells and other types of cells with transfection being possible in the presence or absence of serum. The transfection reagent demonstrates superior transfection efficiency and minimal toxicity when compared to lipid-based or other polymer-based transfection reagents.

Important Product Information

- DNA quality is critical for successful transfection. For excitation/emission absorbance at 260/280nm, a ratio of 1.8 or higher is recommended.
- Endotoxin-contaminated DNA results in inefficient transfection and can cause high cellular toxicity.
- At the time of transfection, the optimal confluency for adherent cells is 70-90%.
- Plate suspension cells at an optimal density to ensure logarithmic growth at the time of transfection.
- Transient transgene expression occurs within 2-72 hours after transfection.
- The optimal incubation time must be empirically determined and depends on the cell type, promoter strength and expression product.
- High transfection efficiency depends on the transgene promoter and the cell line used.
- Cytomegalovirus (CMV) promoter is commonly used for high gene expression in a variety of cell lines; however, other promoters such as simian virus (SV40) and Rous sarcoma virus (RSV) can also be used.
- The volume of transfection reagent used depends on the amount of DNA, transgene and cells to be transfected. The ratios presented in the protocols below are starting amounts and may be optimized.
- Antibiotics do not interfere with transfection reagent/DNA complex formation, cell transfection or transfection efficiency.

Protocol for Transfection of Cells

A. Material Required

• Growth medium: Serum-free DMEM, RPMI or other growth medium

B. General Protocol for Transfection of Adherent and Suspension Cells in a 24-well Plate

Note: The protocol is optimized for transfection in a 24-well plate format. At the time of transfection, the optimal confluency for adherent cells is 70-90%. Suspension cells should be in logarithmic growth phase at the time of transfection. For best results, start with 1 μ g of DNA and 2 μ L of transfection reagent per well in a 24-well plate (See Table 1). Subsequent optimization can further increase transfection efficiency, depending on the cell line and transgene used.

1. In each well, seed $\sim 5 \times 10^4$ adherent cells or $\sim 5 \times 10^5$ suspension cells in 1mL of growth medium 24 hours before transfection.

Note: Prepare transfection reagent immediately before transfection.

- 2. Dilute 1µg of DNA in 100µL of serum-free DMEM or other serum-free growth medium.
- 3. Briefly vortex the transfection reagent and add 2µL to the diluted DNA. Mix immediately by pipetting or vortexing.
- 4. Incubate 15-20 minutes at room temperature.
- 5. Add 100µL of the transfection reagent/DNA mixture drop-wise to each well. Do not remove the growth medium from the cells before adding the transfection reagent/DNA mixture.
- 6. Gently rock the plate to achieve even distribution of the complexes immediately after adding the transfection reagent.
- 7. Incubate at 37° C in a CO₂ incubator.
- 8. Analyze transgene expression after 24-48 hours. For stable transfection, grow cells in selective medium for 10-15 days.

C. Protocol for Reverse Transfection of Adherent and Suspension Cells in a 24-well Plate

Note: The protocol is optimized for transfection in a 24-well plate format. Scale-up quantities and volumes according to the number of cells/wells to be transfected (See Table 1). For best results, start with $1\mu g$ of DNA and $2\mu L$ of transfection reagent per well in a 24-well plate. Subsequent optimization can further increase transfection efficiency, depending on the cell line and transgene used.

Note: Prepare transfection reagent immediately before transfection.

- 1. Dilute 1µg of DNA in 100µL of serum-free DMEM or other serum-free growth medium.
- 2. Briefly vortex the transfection reagent and add 2µL to the diluted DNA. Mix immediately by pipetting or vortexing.
- 3. Incubate 15-20 minutes at room temperature.
- 4. Evenly distribute 100µL of the transfection reagent/ DNA mixture at the bottom of the well of a 24-well plate.
- 5. Gently layer 1mL of $\sim 10^5$ adherent cells or $\sim 10^6$ suspension cells per well on top of the transfection reagent/DNA mixture.
- 6. Incubate at 37° C in a CO₂ incubator.
- 7. Analyze transgene expression after 24-48 hours.

Note: Plates can be centrifuged for 2-5 minutes at $200 \times g$ to collect cells at the bottom of the plate.

Tissue culture	Growth area	Volume of medium	No. of adherent (suspension) cells to seed the day before	usion) cells d the day DNA		Volume of TurboFect Transfection Reagent (µL)	
<u>plate</u>	(cm ² /well)	<u>(mL)</u>	transfection*	<u>(µg)</u>	<u>(µL)**</u>	Recommended	Range
96-well plate	0.3	0.2	$\begin{array}{c} 0.5\text{-}1.2\times10^{4} \\ (2.0\times10^{4}) \end{array}$	0.2	20	0.4	0.3-0.6
48-well plate	0.7	0.5	$1.0-3.0 \times 10^4$ (5.0 × 10 ⁴)	0.5	50	1.0	0.5-1.4
24-well plate	2.0	1.0	$\begin{array}{c} 2.0\text{-}6.0\times10^{4} \\ (1.0\times10^{5}) \end{array}$	1.0	100	2.0	1.0-2.8
12-well plate	4.0	2.0	$\begin{array}{c} 0.4\text{-}1.2\times10^5 \\ (2.0\times10^5) \end{array}$	2.0	200	4.0	2.6-6.0
6-well plate	9.5	4.0	$0.8-2.4 \times 10^5$ (4.0 × 10 ⁵)	4.0	400	6.0	4.0-8.0
60mm plate	20	6.0	$2.0-6.3 \times 10^{5} \\ (1.0 \times 10^{6})$	6.0	600	12.0	8.0-16.0

 Table 1. Scale-up ratios for transfection of adherent and suspension cells using Thermo Scientific

 TurboFect Transfection Reagent.

*Values for suspension cells are in parentheses.

The volume of DNA should be 1/10 the volume of the culture medium used for dilution of the DNA. **Note: These numbers were determined using HeLa and Jurkat cells. Actual values depend on the cell type. The amount of DNA and TurboFect Transfection Reagent used may require optimization.

Troubleshooting

Problem	Possible Cause	Solution
Low transfection efficiency	Suboptimal transfection reagent/DNA ratio	Optimize the amount of transfection reagent added to the fixed amount of DNA
	Suboptimal quantity of DNA	Optimize the amount of DNA used for transfection
		Keep the amount of transfection reagent constant
	Poor DNA quality	Use high-quality DNA with an absorbance ratio greater than 1.8 at 260/280nm
	Suboptimal cell confluency	Optimize cell plating conditions
		Ensure adhered cells are 70-90% confluent at the time of transfection
		Ensure that suspension cells are in logarithmic growth phase at the time of transfection
	Mycoplasma contamination	Regularly check cells for mycoplasma infection

Continued on next page

Continued from prev	vious page	
High cellular toxicity	Toxic transgene	Verify if the expressed transgene is toxic
	Suboptimal incubation	Reduce incubation time of the polyplexes with the cells
	conditions	Replace the transfection mixture 3-4 hours later with new growth medium
	Excess amount of DNA	Reduce the quantity of DNA used for transfection
	Cell density was too low	Increase the plating density of cells used for transfection
	Endotoxin or other toxic materials were present with	Ensure transgene is free of toxic substances
	transgene	Repeat insertion of gene into new toxin-free plasmid preparation

Additional Information

A. Cells successfully transfected with Thermo Scientific TurboFect Transfection Reagent.

Permaner	ntly growing cell lines	Primary cell cultures		
Cos-7	African green monkey kidney cells	Rat fibroblasts		
HeLa	Human cervix adenocarcinoma cells	Mouse bone marrow-derived dendritic cells		
CHO	Chinese hamster ovary cells	Mouse bone marrow-derived macrophages		
HEK293	Human embryonic kidney cells	Human lung fibroblasts (HLF)		
B50	Rat nervous tissue neuronal cells			
Calu1	Human lung epidermoid carcinoma cells			
RAW264	Mouse leukaemic monocyte-macrophage cells			
WEHI	Mouse B cell lymphoma cells			
MDCK	Madin Darby Canine Kidney cells			
Raji	Human Burkitt's lymphoma cells			
COLO	Human colon adenocarcinoma cells			
Jurkat	Human leukaemic T cells			
Sp2/Ag14	Mouse myeloma cells			
HeLa S3	Human cervix carcinoma cells			
Hep2C	Human larynx carcinoma cells			
L929	Mouse connective tissue fibroblasts			
NIH3T3	Mouse embryo fibroblasts			

Related Thermo Scientific Products

16146-89Pierce® Luciferase Assay Kits and Reagents88273High Capacity Endotoxin Removal Spin Columns, 0.1mL, 5/pkg

This product ("Product") is warranted to operate or perform substantially in conformance with published Product specifications in effect at the time of sale, as set forth in the Product documentation, specifications and/or accompanying package inserts ("Documentation") and to be free from defects in material and workmanship. Unless otherwise expressly authorized in writing, Products are supplied for research use only. No claim of suitability for use in applications regulated by FDA is made. The warranty provided herein is valid only when used by properly trained individuals. Unless otherwise stated in the Documentation, this warranty is limited to one year from date of shipment when the Product is subjected to normal, proper and intended usage. This warranty does not extend to anyone other than the original purchaser of the Product ("Buyer").

No other warranties, express or implied, are granted, including without limitation, implied warranties of merchantability, fitness for any particular purpose, or non infringement. Buyer's exclusive remedy for non-conforming Products during the warranty period is limited to replacement of or refund for the non-conforming Product(s).

There is no obligation to replace Products as the result of (i) accident, disaster or event of force majeure, (ii) misuse, fault or negligence of or by Buyer, (iii) use of the Products in a manner for which they were not designed, or (iv) improper storage and handling of the Products.

Current product instructions are available at <u>www.thermoscientific.com/pierce</u>. For a faxed copy, call 800-874-3723 or contact your local distributor. © 2011 Thermo Fisher Scientific Inc. All rights reserved. Unless otherwise indicated, all trademarks are property of Thermo Fisher Scientific Inc. and its subsidiaries. Printed in the USA.