

Speedy Ligase

Catalogue number: MB13001, 50 ligations

MB13002, 100 ligations

Description

Speedy Ligase is an improved DNA Ligase developed to carry out fast (less than 15 minutes) and efficient ligation of sticky or blunt-end DNA at room temperature. The enzyme catalyses the formation of a phosphodiester bond between juxtaposed 5'-phosphoryl and 3'-hydroxyl termini in duplex DNA. Rapid ligation is based on the combination of Speedy Ligase with a 4× Speedy ligation buffer.

Storage temperature

Speedy Ligase should be stored at -20 °C in a non-frost free freezer.

Storage buffer

20 mM Tris-HCl, pH 7.6, 100 mM NaCl, 1 mM DTT, 0.1 mM EDTA and 50% (v/v) glycerol.

Unit definition

One unit catalyses the exchange of 1 nmol of radiolabeled phosphate from pyrophosphate into Norit-absorbable material in 20 min at 37 °C under standard assay conditions.

Enzyme concentration: 10 U/µL

Reaction buffer (4×): Vortex the reaction buffer solution thoroughly after thawing and prior to use. Repeated freezethaw cycles will affect the stability of ATP. We recommend making $10-20~\mu L$ aliquots of the buffer and storage at $-20~^{\circ}C$.

Inactivation: Speedy Ligase is heat inactivated at 65 °C for 10 min.

Speedy ligation protocol

We recommend using a 1:3-10 molar ratio of vector:insert. To calculate optimal amounts of insert DNA in ligation reaction, see below:

<u>nq of vector × kb size of insert</u> × molar ratio of <u>insert</u> = ng of insert kb size of vector vector **Example:** If using 50 ng of a vector plasmid with 3 kb, for a 1:10 molar ratio of vector:insert then you will require the following amount of a 500 bp insert:

$$\frac{50 \times 0.5}{3} \times 10 = 83 \text{ ng}$$

1. On ice, in a sterile, nuclease-free microcentrifuge tube, prepare a reaction mixture, combining the following components (for a 20 μ L reaction):

Component	Volume
4× Speedy ligation buffer (provided)	5 μL
Vector DNA (20-50 ng)	x µL
Insert DNA (3-10 molar excess)	y μL
Speedy Ligase (10 U/µL)	1 μL
Nuclease-free water	up to 20 μL

- 2. Mix and centrifuge briefly to bring the contents to the bottom of the tube.
- 3. Incubate at room temperature for 5-15 minutes (5 min for cohesive ends or 15 min for blunt ends). Longer incubation periods may lead to slightly higher ligation efficiency.
- 4. Use the ligation reaction to transform NZYTech competent cells.

Important notes

- 4× Speedy ligation buffer is highly viscous so it is recommended special care while pipetting
- 4× Speedy ligation buffer should be thoroughly vortexed before pipetting
- Avoid multiple freeze thawing cycles with both enzyme and buffer
- It is extremely important not to change the ratio of Speedy Ligase volume: final volume to prevent decrease in efficiency of cloning reactions.
- For blunt-end ligations, use higher quantities of both vector and insert DNA.
- For sticky (cohesive)-end ligations, we recommend to heat both vector and insert DNA prior to the ligation.
- If the ligation mixture will be used for electroporation, a DNA purification step is recommended before the transformation. Use a spin column purification method (NZYGelpure, MB011) or chloroform extraction.

Quality control assays

Purity

Recombinant Speedy Ligase is >95% pure as judged by SDS polyacrylamide gel electrophoresis followed by Coomassie blue staining.

Nuclease assays

 $0.2\text{-}0.3~\mu g$ of pNZY28 plasmid DNA are incubated with 10 U of Speedy Ligase in 1× Speedy ligation buffer for 14-16 hours at 37 °C. Following incubation, the DNA is visualized on a GreenSafe-stained agarose gel. There must be no visible nicking or cutting of the DNA.

Functional assay

Linearized pNZY28 plasmid (leaving either blunt-end or cohesive ends) is re-ligated with 10 units of Speedy Ligase for 5 minutes at room temperature. The DNA is then transformed into NZY5 α cells that are plated on ampicillin plates. The re-ligation efficiency is determined by counting transformed bacterial colonies.

Revised 01/16

Certificate of Analysis

Test	Result
Enzyme purity	Pass
Nucleases assays	Pass
Functional assay	Pass

Approved by:

José Prates

Senior Manager, Quality Systems

Estrada do Paço do Lumiar, Campus do Lumiar - Edifício E, R/C 1649-038 Lisboa, Portugal Tel.:+351.213643514

Fax: +351.217151168

www.nzytech.com