

NZY M-MuLV First-Strand cDNA Synthesis Kit, separate oligos

Catalogue number: MB17301, 50 reactions

MB17302, 250 reactions

Features

- Possibility to choose the primer to initiate the reaction
- Cost-effective kit using NZY M-MuLV Reverse Transcriptase
- Provides high yields of full-length cDNA products for use in RT-qPCR and two-step RT-PCR assays
- Formulated to increase sensitivity in RT-qPCR
- Starting material: 10 pg to 5 μg of total RNA
- Optimal reaction temperature: 37 °C
- Convenient and reliable

Description

NZY M-MuLV First-Strand cDNA Synthesis Kit, separate oligos, is a system that includes all the necessary components to synthesize first-strand cDNA, except the template RNA. Random hexamers and Oligo(dT)₁₈ primers are provided in separate tubes to offer the convenience to choose the appropriate primer to initiate your reverse-transcription reaction.

The resulting single-stranded cDNA is suitable for use in real-time quantitative Reverse Transcription PCR (RT-qPCR). NZY M-MuLV First-Strand cDNA Synthesis Kit, separate oligos, is formulated to provide high yields of full-length cDNA products and to increase sensitivity in RT-qPCR.

Starting material can range from 10 pg up to 5 µg of total RNA. Besides random hexamers and Oligo(dT)₁₈ primers, the kit includes NZYRT 2× Master Mix, no oligos, which contains dNTPs, MgCl₂ and an optimized RT buffer; 10× Annealing Buffer and NZYM-MuLV RT Enzyme Mix. NZYM-MuLV RT Enzyme Mix includes both NZY M-MuLV Reverse Transcriptase (RNase H minus) and NZY Ribonuclease Inhibitor in order to protect RNA against degradation due to ribonuclease contamination. RNase H (from *E. coli*) is provided in a separate tube to specifically degrade the RNA template in cDNA:RNA hybrids after the first-strand cDNA synthesis. This procedure will improve the sensitivity of subsequent RT-qPCR reactions since PCR primers will bind more easily to the cDNA.

Shipping conditions

NZY M-MuLV First-Strand cDNA Synthesis Kit, separate oligos, is shipped on dry ice.

Storage conditions

Store all kit components at -20 °C in a freezer without defrost cycles. Stability can be extended by storing it at -80 °C. The kit is stable for up to 3 years.

System Components

Component	MB17001 (50 reactions)	MB17002 (250 reactions)
NZYM-MuLV RT Enzyme Mix ⁽¹⁾	100 μL	5 × 100 μL
NZYRT 2× Master Mix, no oligos ⁽²⁾	500 μL	5 × 500 μL
10× Annealing Buffer	50 μL	5 × 50 μL
Random hexamer mix (50 ng/µL)	500 μL	500 μL
Oligo(dT) ₁₈ primer mix (50 µM)	100 μL	3 × 100 µL
NZY RNase H (<i>E. coli</i>)	50 μL	5 × 50 μL
DEPC-treated H ₂ O	1 mL	2 × 1 mL

⁽¹⁾ Includes NZY M-MuLV Reverse Transcriptase and NZY Ribonuclease Inhibitor. (2) Includes MgCl₂ and dNTPs.

Protocol for first-strand cDNA synthesis

1. On ice, perform the annealing reaction by adding the following components into a sterile, nuclease-free microcentrifuge tube (for multiple reactions, a master mix without RNA may be prepared):

RNA (up to 5 µg)	×μL
Oligo(dT) ₁₈ primer mix (50 μM), or random hexamer mix (50 ng/μL), or gene-specific primer (2 μM)	1 μL
10× Annealing Buffer	1 µL
Nuclease-free water	up to 8 μL

- 2. Mix gently and incubate at 65 °C for 5 min.
- **3.** Place on ice for at least 1 min and then centrifuge briefly.
- **4.** On ice, perform the reverse-transcription step, by adding the following components to the tube:

NZYRT 2× Master Mix, no oligos	10 μL
NZYM-MuLV RT Enzyme Mix	2 μL
Final Volume	20 μL

- 5. Mix gently and centrifuge briefly.
- **6.** Incubate at 37 °C for 50 min.

Note: When using random-hexamer primers, incubate first at 25 $^{\circ}$ C for 10 min and then at 37 $^{\circ}$ C for 50 min.

- **7.** Inactivate the reaction by heating at 85 °C for 5 min and then chill on ice.
- **8.** Add 1 μ L of NZY RNase H (*E. coli*) and incubate at 37 °C for 20 min.
- **9.** Use the cDNA product directly in PCR or qPCR diluted in TE buffer or undiluted; or store at -20 °C until required.

Important notes

- High quality intact RNA, free of residual genomic DNA and RNases is essential for full-length, high quality cDNA synthesis and accurate RNA quantification. For this reason, special precautions should be taken when working with RNA:
 - Aseptic conditions should be maintained; always wear gloves; change gloves whenever you suspect that they are contaminated; use RNase-free tubes and pipet tips; designate a special area and equipment for RNA work only.
 - DNase I (not provided) may be used to eliminate genomic DNA contamination from the starting total RNA.
 - The template RNA should be stored at -70 °C. Avoid multiple freeze/thaw cycles of RNA.
- This kit does not include control RNA.
- Keep all reagents of the kit on ice while setting up the reactions.
- When performing RT-qPCR using the synthesized cDNA as template, no more than 1/10 of the final PCR volume should be derived from the reverse-transcription product. For instance, use up to 5 μ L of cDNA obtained in the first-strand synthesis in a 50 μ L PCR reaction.

Quality control assays

Purity

NZY M-MuLV Reverse Transcriptase and NZY Ribonuclease Inhibitor present in the Enzyme Mix are >90% pure as judged by SDS polyacrylamide gel electrophoresis followed by Coomassie blue staining.

Nucleases assays

All components of the kit are tested for DNase and RNase activities, using 0.2-0.3 μg of pNZY28 plasmid DNA and 1 μg of RNA, respectively. Following incubation at 37 °C, the nucleic acids are visualized on a GreenSafe-stained agarose gel. There must be no visible nicking or cutting of the nucleic acids.

Functional assay

NZY M-MuLV First-Strand cDNA Synthesis Kit, separate oligos, is tested functionally in a RT-PCR experiment designed to calculate the number of mRNA copies of the GAPDH gene in mouse liver cells, using Random hexamer mix or Oligo(dT)₁₈ primer mix. Precisely, 1 µg of total RNA extracted from mouse liver is used as starting template material.

Troubleshooting

Little or no RT-PCR/RT-qPCR amplification product

• RNA damage or degradation

Analyse RNA on a denaturing gel to verify integrity. Use aseptic conditions while working with RNA to prevent RNase contamination. Replace RNA if necessary.

· Presence of RT inhibitors

Some inhibitors of RT enzymes include: SDS, EDTA, glycerol, sodium phosphate, spermidine, formamide and guanidine salts. Remove inhibitors by ethanol precipitation of the RNA preparation before use; wash the pellet with 70% (v/v) ethanol.

• Not enough starting RNA

Increase the concentration of starting RNA.

Unexpected bands after electrophoretic analysis of amplified products

Genomic DNA contamination

DNase I may be used to eliminate genomic DNA contamination from the starting RNA.

Revised 10/15

Certificate of Analysis		
Test	Result	
Enzyme purity	Pass	
Nucleases assay	Pass	
Functional assay	Pass	
Approved by:	José Prates Senior Manager, Quality Systems	

